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Abstract
We compare unrestricted dose average linear energy transfer (LET) maps 
calculated in voxelized geometries irradiated with proton therapy beams with 
three different Monte Carlo scoring methods. Simulations were done with the 
Geant4 (Geometry ANd Tracking) toolkit. The first method corresponds to a 
step-by-step computation of LET which has been reported previously in the 
literature. We found that this scoring strategy is influenced by spurious high 
LET components, which significantly increases as the voxel size becomes 
smaller. Dose average LET values calculated for primary protons in water 
with voxel size of 0.2 mm were a factor ~1.8 higher than those obtained with 
a size of 2.0 mm at the plateau region for a 160 MeV beam. Such high LET 
components are a consequence of proton steps in which the condensed-history 
algorithm determines an energy transfer to an electron of the material close to 
the maximum value, while the step length remains limited due to voxel boundary 
crossing. Two alternative methods were derived to overcome this problem. 
The second scores LET along the entire path described by each proton within 
the voxel. The third followed the same approach of the first method, but the 
LET was evaluated at each step from stopping power tables according to the 
proton kinetic energy value. We carried out microdosimetry calculations with 
the aim of deriving reference dose average LET values from microdosimetric 
quantities. Significant differences between the methods were reported either 
with pristine or spread-out Bragg peaks (SOBPs). The first method reported 
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values systematically higher than the other two at depths proximal to SOBP 
by about 15% for a 5.9 cm wide SOBP and about 30% for a 11.0 cm one. At 
distal SOBP, the second method gave values about 15% lower than the others. 
Overall, we found that the third method gave the most consistent performance 
since it returned stable dose average LET values against simulation parameter 
changes and gave the best agreement with dose average LET estimations from 
microdosimetry calculations.

Keywords: proton therapy, LET, Monte Carlo simulation, Geant4

(Some figures may appear in colour only in the online journal)

1.  Introduction 

Proton and carbon therapy have become more wide spread radiation therapy techniques in the 
recent years (Delaney and Kooy 2008, Schardt et al 2010). The potential advantages offered 
by light-ion beams regarding dose conformality over photon beams and recent technological 
advances have motivated the growth in the number of institutions offering such therapies, with 
others being currently in construction or planned (PTCOG). 

Furthermore, protons and carbon ions offer a cell-killing effectiveness higher than photons 
for the same level of absorbed dose. This quality is often quantified in terms of a factor, rela-
tive biological effectiveness (RBE), which converts absorbed dose into biological dose (IAEA 
2008). The RBE depends on physical properties, such as dose or radiation quality, and with 
biological aspects such as tissue type or endpoint considered (Belli et al 1998, Belli et al 2000, 
Furusawa et al 2000, Gerweck and Kozin 1999, Goodhead et al 1992, Paganetti et al 2002, 
Wouters et al 1996).

Currently, the knowledge of biological parameters is limited. Thus, most RBE models use 
beam properties as input data and introduce phenomenological parameters to encompass the 
tissue response. Radiation quality has been characterized either from a microscopic approach, 
such as track-structure (Paganetti and Goitein 2001) and microdosimetry analysis (Hawkins 
2003, Lindborg et al 2013, Burigo et al 2014), or with macroscopic models, usually in terms 
of linear energy transfer (LET) or dose average LET (Ld) (Wilkens and Oelfke 2004, Carabe 
et al 2013).

A constant RBE value of 1.1 is clinically recommended for protons, although it is well 
known that the RBE can be larger, especially at distal Bragg peak region (Matsuura et al 
2010). Thus, recent works aim at using dose and Ld objective functions to optimize pro-
ton plans in order to increase the biological effectiveness of proton treatments (Frese et al 
2011, Giantsoudi et al 2013, Fager et al 2014). This approach has been called ‘LET-painting’ 
(Bassler et al 2010). These works take advantage of the monotonic dependence that RBE has 
in terms of LET for clinical proton beams. For heavier ions, the RBE decreases at high values 
of LET due to the overkill effect (Barendsen 1994); thus, the so-called LET-painting with 
carbon ions is not as straightforward as with protons.

The calculation of restricted and unrestricted Ld distributions in clinical proton beams has 
been carried out either by means of analytical models (Wilkens and Oelfke 2003, Kempe et al 
2007) and Monte Carlo simulations (Grassberger and Paganetti 2011, Kantemiris et al 2011, 
Romano et al 2014). In both approaches, Ldcalculations have been done based on fluence 
evaluation of primary and, sometimes, secondary particles. Also, a step-by-step approach has 
been proposed in Monte Carlo simulations in which LET is directly computed using the true 
step length and the electronic energy loss at that step.
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Most of the Monte Carlo simulations use a very similar method to calculate Ld, and no 
critical analysis has ever been done to assess the correctness of this method considering the 
impact of changes of important parameters involved in these calculations such as, for instance, 
the voxel size. The current work intends to address this critical analysis by proposing three dif-
ferent LET calculation methods (including the most widely used in previous publications) and 
assess how the variation of voxel dimensions and production threshold of secondary electrons 
affect the outcome of each of these methods differently, and from here elucidate if there is an 
unrestricted Ld calculation method independent of variations of the mentioned parameters. 
These parameters are intrinsic to any condensed-history Monte Carlo simulation tool and 
have sufficient impact in clinical practice that makes such sensitivity analysis imperative with 
the objective of producing a standardization of Ld calculations that is not affected by spurious 
artifacts induced by changes of the simulation setup.

The performance of each method is evaluated by comparing their calculated unrestricted 
Ld values with those obtained from microdosimetric dose-mean lineal energy (yD) calculations 
carried out separately and used as reference values to verify the consistency of the Ld val-
ues obtained. All these calculations were performed in water with clinically-relevant proton 
beams, either pristine or spread-out Bragg peaks (SOBPs).

2.  Methods

The calculations were carried out with the Geant4 (GEometry ANd Tracking) toolkit 
(Agostinelli et al 2003, Allison et al 2006), version 9.6.2. As Ld and yD are at the core of the 
present calculations, we first present an overview of these two concepts.

2.1.  Definitions

2.1.1.  Dose average LET, Ld.
The concept of LET for therapeutic protons traveling in water is closely related to the elec-
tronic component of the linear stopping power, Sel, as the nuclear and radiative components 
are negligible at such energies (ICRU 1993). The LET is defined as the mean energy lost by 
charged particles, dE, travelling a distance dl through the target material (ICRU 1998 2011). 
The unrestricted LET, formally ∞L  or, simply, L, includes the contribution of all secondary 
electrons in the energy lost, without restrictions applied to their initial kinetic energy; thus,

� =L S .el (1)

In all the simulations of this work, we calculate unrestricted LET, as done in other works 
(Wilkens and Oelfke 2003, Grassberger and Paganetti 2011).

LET is usually calculated as an average value, namely track average LET, L t, or dose aver-
age LET, Ld (ICRU 1970). In this work we focus on Ld, since it has been used to estimate 
the RBE of protons irradiating water and human tissue at therapeutic energies (Wilkens and 
Oelfke 2004, Carabe et al 2013). There are two equivalent methods to calculate Ld. The first 
considers the average along a particle track, so that Ld is calculated as

� ∫=    L L d L L( ) d ,d (2)

where L is the unrestricted LET and d(L) is the absorbed dose distribution function, i.e., 
 d L L( ) d  is the fraction of the absorbed dose delivered with LET values between L and L + dL 

(ICRU 1970).
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The second method considers the average as a local mean. Here, Ld is calculated by the 
contribution of all particles at a certain position x of the radiation field (Wilkens and Oelfke 
2003). Thus, for a voxel placed at x, dose average LET is given by

�
∫
∫

φ

φ
=

   

     

∞
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x

x

x
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d
0

2

0

(3)

where ϕE(x) is the spectral fluence of particles entering into the voxel with a kinetic energy 
value between E and E + dE, and S(E) is the electronic stopping power of these particles when 
they pass through the target material at kinetic energy E.

2.1.2  . Dose-mean lineal energy and its relation with dose average LET.  Whereas LET is 
often used to specify the quality of the radiation under consideration, which is intrinsically 
related to the energy deposition map along the particle tracks, it is not a stochastic magnitude. 
This stochastic nature is often important to explain the difference between the radiobiological 
properties of radiations with similar LET values. For this purpose, microdosimetric quantities, 
such as the lineal energy, y, are considered.

The lineal energy (ICRU 1983) is defined as the energy imparted to a delimited region of 
space (site or sensitive volume) by a single energy deposition event, εs, divided by the mean 
chord length, l , of that volume,

�
ε=y
l

.s
(4)

The mean chord length is the mean length of randomly oriented lines crossing the sensitive 
biological volume (traditionally called ‘site’). For a convex site shape, =l V A4 / , where V is 
the volume and A is the surface area of the region. Thus, for a spherical site =l R4 / 3, where 
R is the radius of the sphere. In contrast to LET, lineal energy is a stochastic and measurable 
quantity (Lindborg et al 2013).

Given the stochastic nature of particle transport through materials, the amount of energy 
imparted per event (i.e., single energy deposition) varies from one event to another. Thus, 
average values are often reported together with probability distribution functions to character-
ize the irradiation at a given point.

The ICRU (1983) defines the dose-mean lineal energy, yD, as

� ∫
∫
∫

= =
∞

∞

∞y y d y y
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    ( )d
,D

0

0

2

0

(5)

where f(y) and d(y) are the probability and dose density distributions of lineal energy, 
respectively.

The relation between yD and Ld is complex. Assuming a spherical site of diameter d irra-
diated with protons with considerably longer residual range, the following expression was 
demonstrated (Kellerer 1985):

�
δ= +y L

9

8

3

2d
,D d

2
(6)

where δ2 represents the weighted average of the energy imparted per collision of the traversing 
charged particle including all the energy deposits made by the correlated secondary electrons, 
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εc. Let fc(εc) be the probability density of εc. Assuming that the energy transferred per collision 
equals the energy actually imparted (i.e., no effluence of δ-rays released within the sensitive 
volume) and free electron model, roughly ε ε ε≡ =f f k( ) ( ) / ,c c c,free c c

2  where k is a normaliza-
tion constant. Under these assumptions (Kellerer 1985), δ2 is obtained from

�
∫
∫

δ
ε ε ε

ε ε ε

ε
ε

= ≈
f

f I

  ( ) d

  ( ) d 2ln ( / )
,2

c
2

c,free c c

c c,free c c

max

max
(7)

where εmax is the maximum energy loss in one collision (approximately equal to the maximum 
energy transferred by a heavy particle to a free electron at rest) and I is the mean ionization 
potential of the medium; for water, the I-value is 78 eV according to ICRU (2005). If the 
range of the δ-rays produced by the traversing charged particle is expected to be larger than 
the site diameter, then the calculation of δ2 has to be corrected due to the effluence of δ-rays 
released within the site, since the probability distribution of energy imparted in single colli-
sions becomes different from fc,free(εc), as discussed by Kellerer (1985). The result is that the 
effective value of εmax is influenced by the site diameter. Roughly, this effective εmax can be 
approximated to an effective energy value, Ed, which corresponds to the energy of an electron 
with range similar or slightly smaller than the diameter of the site (Kellerer 1985). Thus,

�δ ≈ E

E I2ln ( / )
.2

d

d
(8)

In this work, we focus on comparing different Ld calculation methods carried out for primary 
protons in water irradiated by therapeutic beams. The values obtained are compared with Ld 
values estimated from yD calculations as consistency verification. We consider only primary 
protons in order to do straightforward comparisons between the different Ld Monte Carlo 
calculation methodologies. In the subsequent subsections we will: (i) explain the geometries 
used to calculate Ld and yD with Monte Carlo simulations, (ii) show the different Monte Carlo 
methodologies to calculate Ld, and (iii) compare the Ld values determined from yD calcula-
tions (6) with the Ld values calculated at the same depth in water in order to validate the most 
consistent Ld calculation method.

2.2.  Setups used in the Monte Carlo simulations

2.2.1.  Dose average LET, Ld.  The geometry used for dose and Ld calculations consisted of 
a water tank in which cylindrical voxels were defined as depicted in figure 1 for scoring pur-
poses. The transversal width and thickness along the central axis of the voxels were set by the 
parameters Δr and Δz, respectively. Δr defined the distance between voxel boundaries along 
transversal axes, so that central voxels had a diameter of Δr and off-axis ones had a transversal 
width of Δr. Δz defined the voxel thickness along the water tank central axis. The value of Δr 
was varied between 0.5 and 5.0 mm, whereas Δz was varied between 0.2 and 2.0 mm in order 
to consider clinically relevant voxel dimensions. Voxels were defined up to a 10 cm transver-
sal distance from the central axis and at a 30 cm depth. Water material was simulated with 
G4_WATER, taken from the Geant4 NIST database.

We used the set of physics models (also referred to as ‘physics list’) recommended for the 
simulation of therapeutic proton beams with Geant4 (Romano et al 2014). Electromagnetic 
interactions were simulated with G4EmStandardPhysics_option3 physics list builder, 
which implements a condensed-history algorithm based on the Bethe-Bloch restricted 
energy loss formula for proton transportation; further details are provided in the Geant4 
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Physics Reference Manual (GEANT4, chapter 12). Hadronic interactions were reproduced 
with models implemented in the QGSP_BIC_HP physics list, in which Geant4 native pre-
equilibrium and de-excitation models are used as low energy stages of the Binary Cascade 
model (Folger et al 2004, Quesada et al 2011) for protons, neutrons and ions. As for the 
tracking of secondary particles, the production cut value was varied between 0.05–0.20 mm 
for electrons, photons and positrons. Thus, secondary particles (e.g., δ-rays) were explicitly 
produced only if their initial kinetic energy was such that the expected range in the medium 
(water) was larger than the production cut value. Otherwise, the secondary particle was not 
explicitly tracked, its kinetic energy considered as deposited along the step done by the 
primary particle.

2.2.2.  Dose-mean lineal energy, yD.   Microdosimetry calculations were carried out with a 
simple simulation which geometry consisted of a spherical sensitive volume contained within 
the world volume, as shown in figure 2. The aim of these simulations was to calculate yD 
values at certain depths in the water tank setup (see previous section) to estimate Ld values 
according to (6). To do this, we followed the approach described below:

	 •	 Although Geant4 includes the Geant4-DNA package (Incerti et al 2010), which makes 
it possible to carry out track-structure simulations with the Geant4 toolkit, we decided 
to simulate δ-ray transport with models included in the G4EmPenelopePhysics physics 
list, which includes transport models based on the version 2008 of the PENELOPE code 
(Salvat et al 2009). Despite following a condensed-history approach, this physics list 
can produce δ-rays down to an initial kinetic energy of 100 eV (which corresponds to 
an electron range of roughly 0.6 µm in water), thus providing reliable results at a scale 
of ~10 µm. In fact, Burigo et al (2014) recently showed a good agreement between 
G4EmPenelopePhysics and Geant4-DNA for a wall-less tissue equivalent proportional 
counter (TEPC) simulating a tissue volume of 0.72 μm. For these reasons, we set a scoring 
sphere radius, Rc, of 5 µm and used G4EmPenelopePhysics, for the sake of achieving an 
acceptable computing efficiency with a simple geometry. As for hadronic interactions, we 
kept QGSP_BIC_HP, mentioned in the previous section.

Figure 1.  Scheme of the cylindrical geometry used for the calculation of dose average 
LET in water. The beam enters from the left. Δz sets the voxel thickness along the beam 
axis. Δr sets the distance between voxel boundaries along the transverse axes.

∆r

∆z
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	 •	 If the scoring volume were simulated within the water tank setup, we would need to 
simulate a huge number of primary protons in order to achieve good energy deposition 
statistics within the sphere; thus, we defined a microscopic simulation setup in which the 
spherical sensitive volume was placed at the center of a world volume of 5 mm sides. To 
define the energy spectrum of the proton beam which irradiated the sensitive volume, we 
previously ran a simulation of the water tank setup which created a phase-space file in 
IAEA format (Cortés-Giraldo et al 2012) at the depth of interest, from which the energy 
spectrum was extracted and stored into a ROOT histogram. The histogram was then used 
to produce the energy spectrum of the proton beam in this microscopic setup, so that the 
sensitive volume was virtually irradiated at the depth of the phase-space plane.

	 •	 In order to ensure that the sensitive volume was irradiated uniformly and that all indirect 
events were simulated (i.e., events where the energy imparted to the sensitive volume 
is only due to δ-rays), we estimated the maximum range of δ-rays produced by the 
beam, re,max. To do this, we obtained the maximum energy value of the proton beam 
spectrum and calculated the maximum kinetic energy transferred to a δ-ray, from which 
re,max was estimated by means of NIST’s ESTAR program (Berger et al 2005), based on 
tables published by ICRU (1984). Thus, the spatial distribution of the proton beam was a 
uniform circle with a radius, Rb, about 10 µm larger than re,max; also, the proton beam was 
produced at a distance to the center of the site, z0, about 10 µm larger than re,max, as shown 
in figure 2.

We point out that the aim of these microscopic calculations is just to obtain yD values for a 
microscopic sensitive volume placed at several depths in water in order to estimate Ld accord-
ing to (6). These simulations do not aim to perform microdosimetry calculations with track 
structure analysis purposes, as done in other works with 10 nm target volumes (Francis et al 
2012, Lindborg et al 2013). Nevertheless, figure 3 shows the y·d(y) distributions calculated with 
Geant4-DNA and G4EmPenelopePhysics with a uniform proton beam where its energy spectrum 

Figure 2.  Scheme of the geometry used for microdosimetry simulations (2D projection). 
A spherical volume of radius Rc = 5 μm is placed for scoring purposes within a larger 
water volume. The primary proton beam (arrows) has a circular shape of radius Rb and 
is placed at a distance z0 from the center of the cavity. The maximum range of δ-rays, 
re,max, is also illustrated.
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was calculated at 16.5 cm depth in water (mean energy of 35.1 MeV, approximately). The agree-
ment is remarkable and justifies the usage of G4EmPenelopePhysics in our simulations.

In order to keep a coherent comparison with the Ld values calculated with the water tank 
setup, we only scored primary protons and their δ-rays for the calculation of yD, i.e., the 
energy imparted due to fragments produced by nuclear reactions was not taken into account. 
To derive Ld from yD by means of (6), we estimated Ed in (8) from εc fc(εc) and εc

2 fc(εc) calcu-
lations (see appendix). This was done because of the 100 eV production threshold mentioned 
above, which essentially cuts fc(εc) below this value; therefore, we could not obtain any infor-
mation of fc(εc) below this threshold. An example is shown in figure 4, which presents εc

2 fc(εc) 
calculated with the site irradiated by protons where its energy distribution was previously cal-
culated at 15 cm depth in a water tank irradiated with a 160 MeV proton beam. Thus, in order 
to overcome this limitation we decided to estimate the value of Ed as indicated in the appendix.

The calculation of the energy imparted within the sensitive volume per proton single col-
lision, εc, was done in our Geant4 application by scoring separately each shower started by a 
secondary electron set in motion in the site by a primary proton. For this purpose, we coded 
a sensitive detector class in which the track ID of each secondary electron released due to 
primary proton interactions was used to tag each δ-ray shower. Thus, the energy deposited 
in the site by each δ-ray shower, including δ-rays created by further collisions of the electron 
originating the shower, could be scored independently of each other.

2.3.  Dose average LET calculation methods

Ld can be calculated from definitions (2)–(3) in Monte Carlo simulations in an event-by-event 
basis as

�

⎜ ⎟
⎛
⎝

⎞
⎠∑

∑
=

 
L

E

l
E

E

d

d
d

d
,n

n

d (9)

Figure 3.  y·d(y) distributions obtained with Geant4-DNA (filled circles) and 
G4EmPenelopePhysics (open circles) for a spherical sensitive volume (5 µm radius) 
uniformly irradiated with protons. The energy distribution of the beam was previously 
calculated at a 16.5 cm depth in a water tank irradiated with a 160 MeV proton beam, 
which corresponds to a proton mean energy of approximately 35.1 MeV. Statistical 
uncertainty (1σ) is shown with error bars.
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where n is the event index, dE is the energy lost and dl the track length for each event. 
Equation (9) does not specify how (dE / dl) dE is computed within each particular event. 
Thus, since the number of steps needed to transport each proton along a given voxel var-
ies from each other, the numerator of (9) can be computed in a step-by-step basis or, as 
another approach, the numerator and denominator of the quotient (dE / dl) can be computed 
separately for all steps done within a given voxel through prior multiplication by the energy 
deposition in the voxel.

Let us represent the event index with n and the step index of the primary proton simulated 
at that event with s. If we consider that the number of steps performed to transport the primary 
proton along the voxel at the event n is Sn, and the total number of events simulated is N, the 
step-by-step computation of (9) becomes

�

∑ ∑

∑ ∑

ω ε

ω ε
=

 

   

 =   = 

 =   = 

L
l

,n

N

s

S

n
sn

sn

n

N

s

S

n sn

d
1 1

2

1 1

n

n
(10)

where lsn and εsn are, respectively, the length and the electronic energy loss by the primary 
proton during the step s of event n, and ωn is the statistical weight of the primary proton. Since 
we are interested in calculating unrestricted Ld, εsn is calculated as the energy deposited by 
the primary proton along the step (i.e., the continuous part of the energy deposition due to the 
passage of the primary proton) plus the kinetic energy of the δ-rays released in the medium 
in that step.

Alternatively, we can compute separately the electronic energy loss εsn and step length lsn 
for all the steps done by a primary proton within a given voxel through prior calculation of 
the LET and multiplication by the weighting factor of the average. This gives the following 
scoring of Ld:

Figure 4.  Monte Carlo calculation of εc
2 fc(εc) distribution for a spherical sensitive 

volume (5 µm radius) irradiated with protons. The energy distribution of the beam was 
previously calculated at a 15.0 cm depth in a water tank irradiated with a 160 MeV 
proton beam, which corresponds to a proton mean energy of approximately 55 MeV. 
Statistical uncertainty (1σ) is shown with error bars.
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Clearly, (10) and (11) only become equivalent if all the primary protons cross the voxel in only 
one step, which for instance happens when δ-rays are not explicitly tracked in the simulation; 
this means in Geant4 there is a large value of the production threshold of secondary particles. 
In any other case, (10) and (11) can become significantly different since each simulation step 
finishes whenever a δ-ray is produced. 

A variation of (10) was also implemented as the third Ld calculation method. Instead of 
computing the LET as the quotient between the actual electronic energy loss and step length 
computed during the simulation, we calculated the LET of the step, Lsn, as the corresponding 
mean energy loss per unit path length in the material according to the proton kinetic energy 
at the step. In our code, Lsn was obtained with the method ComputeElectronicDEDX() of 
G4EmCalculator class. This method can be called at each step and calculates the LET from 
electronic stopping power tables built at the beginning of the simulation, once particle type, 
kinetic energy and material are provided. The kinetic energy was the arithmetic mean between 
the values at pre- and post-step points. Further, Lsn was calculated only for steps terminated 
only by an electromagnetic interaction (such as δ-ray production by ionization) or a bound-
ary crossing, since other kinds of interactions (e.g., inelastic hadronic) may completely lose 
the identity of the track. Thus, the average of Lsn weighted by the electronic energy loss (εsn) 
computed at that step yields
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1 1
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(12)

For the sake of simplicity, in references hereafter we refer to the methods described in  
(10)–(12) as ‘A’, ‘B’ and ‘C’, respectively.

2.4.  Validation of the Ld calculation methodologies

Two proton beam types were considered. First, the water tank was irradiated by a 160 MeV 
proton beam with an energy spread σE = 1.04 MeV; the beam profile was modeled as a 2D 
Gaussian with σ = 8.9 mm in both transversal axes. Ld was calculated with (10)–(12) within 
the water tank along the beam axis. Microdosimetry yD values were calculated for proton 
energy spectra taken at several depths and the corresponding Ld value, estimated by means 
of (6), was compared with those calculated at the same depths with the scoring methods 
described in (10)–(12).

Second, broad beams were considered to produce arbitrary SOBPs. In this case, the beam 
profile was uniform along transversal directions, circular shape and radius of 3.0 cm. The 
mean energy, spectral width and weight of each pristine Bragg peak were taken from pencil 
beam scanning calculations done with the treatment planning system used at the University 

AQ4
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of Pennsylvania (Eclipse, Varian). Normal incidence on the water tank was considered, for 
simplicity, since this work aims to compare various Monte Carlo calculation methods of Ld 
and not to reproduce accurately the dose or Ld maps.

3.  Results

Figure 5 shows Ld values calculated with methods ‘A’ (top), ‘B’ (middle) and ‘C’ (bottom) 
for a 160 MeV proton beam of Gaussian profile and energy spectrum (σx = σy = 8.9 mm;  
σE = 1.04 MeV); 108 primary protons (events) were simulated. The production cut of sec-
ondary particles was 0.05 mm. Scoring was done along the central axis of a voxel grid with  
Δr = 5.0 mm and Δz value between 0.2 and 2.0 mm; the Ld value calculated for primary pro-
ton tracks is reported at the central point of each voxel. Steps with lengths smaller than 2 nm 
(roughly the width of a DNA molecule) were not taken into account to ensure numerical 
stability. These calculations are compared with the Ld values obtained from yD microdosim-
etry calculations carried out by irradiating a 5 µm spherical volume with protons of the same 
energy spectrum as that obtained in the water tank at the depth considered. Table 1 shows, for 
several depths, the calculated yD (with 1σ statistical uncertainties), Ed and δ2 values estimated 
from the probability density of energy imparted per single collision (see previous section and 
appendix), and the corresponding Ld calculated from (8) together with their uncertainties. 
Since (6) is valid only if the proton residual range is considerably larger than the site diameter, 
we only report calculations up to ~5 mm upstream from the Bragg peak position.

Clearly, there is a significant impact on the calculated Ld values not only due to the 
method used but also due to the voxel thickness, Δz. Moreover, the differences shown 
around the Bragg peak region (depth larger than ~1 cm upstream from the depth of the max-
imum dose) are of a different nature than those found at the entrance and plateau region  
(up to ~15 cm depth).

Method ‘A’ shows a significant variation at the entrance and dose plateau region (roughly 
up to 15 cm depth) towards higher Ld values as Δz becomes smaller. However, these calcu-
lations give stable results around the Bragg peak region (depths larger than 16 cm) against 
changes of the voxel thickness, Δz, which is the expected result since the LET distribution at 
a given depth should not vary because of the voxel dimensions used for scoring. Method ‘B’ 
performs better than method ‘A’ at the dose plateau region, since it shows smaller systematic 
variations and a better agreement with the Ld values estimated from the microdosimetry calcu-
lations. However, method ‘B’ shows a clear systematic variation beyond the Bragg peak posi-
tion. Method ‘C’ shows better performance than the others, since no variations are observed 
due to changes in Δz and also presents a good agreement with respect to Ld obtained from 
microdosimetry.

The origin of the systematic variation observed in the Ld value obtained at the dose plateau 
region with method ‘A’ is shown in figure  6. The upper histogram presents the electronic 
energy loss per primary proton step, εs, versus the step length, ls, within a voxel placed at 
the central axis at 4.0 cm depth, Δz = 0.5 mm, normalized to the total number of steps done 
by primary protons inside this voxel. As expected, most step lengths are roughly equal to Δz. 
Also, the LET of bins with the highest number of counts is between 0.1 and 1.0 keV µm−1, 
compatible with the LET of a proton with energy equal to the mean of the energy spectrum 
(137.8 MeV, which LET in water is 0.58 keV µm−1). However, this histogram also presents a 
horizontal tail which includes bins associated with higher LET values. This tail appears due 
to steps which have been terminated by the condensed-history algorithm to generate explicitly 
a δ-ray above the production threshold of secondary particles, as demonstrated at the middle 
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Figure 5.  Dose average LET calculated with methods ‘A’ (top), ‘B’ (middle) and ‘C’ (bottom) along 
the central axis of a water tank irradiated by a 160 MeV proton beam; scoring voxel thicknesses (Δz) 
of 0.2 mm (solid lines), 0.5 mm (dashed), 1.0 mm (dot dashed) and 2.0 mm (double dot dashed) were 
considered; statistical uncertainty (1σ) is reported with shadow bands visible. Diamonds show the dose 
average LET values obtained from dose-mean lineal energy (yD) calculations in a water spherical volume 
of 5 µm radius (see table 1); statistical uncertainties (1σ) are contained within the symbol size. Depth 
dose profile normalized to maximum is shown with a dotted line. Dose average LET is reported only for 
voxels with dose deposition greater than 0.1% of maximum.
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plot of this figure, which presents only steps of this type. The tail appears because the initial 
kinetic energy of any δ-ray explicitly tracked in the simulation is always greater than the 
energy threshold that corresponds to the production cut value. Thus, the electronic energy loss 
of the primary proton in steps terminated by an ionization process which explicitly produces 
a δ-ray above the energy threshold must always be greater than such an energy value due to 
energy conservation. However, the proton step length rarely becomes larger than Δz, since the 
step is finished when the proton reaches a volume boundary. As a consequence, the LET cal-
culated at such a step according to method ‘A’ may become spuriously high if the step length 
remains short due to voxel boundary crossing. This introduces spurious high LET terms into 
the weighted average which produces the systematic bias of higher LET values for smaller 
Δz observed for method ‘A’ in figure 5. In these calculations, the production cut of secondary 
electrons was 0.05 mm, which corresponds to an initial kinetic energy threshold of 0.057 MeV 
in water. Thus, the minimum possible value of the electronic energy loss (εs) of the proton at 
such steps is roughly 0.06 MeV which is independent of the step length, as observed in the 
histogram. The lower histogram of figure 6, presents the data used to calculate Ldat the same 
voxel according to method ‘B’ (11). It shows the electronic energy loss of primary protons 
along the trajectory described within the voxel versus the trajectory length; in other words, εs 
and ls are summed separately over all the simulation steps done by each primary proton within 
the voxel. This histogram is normalized to the number of primary protons reaching the voxel. 
Here, it is clearly observed that the high LET bins due to steps emitting secondary electrons 
do not appear, explaining why method ‘A’ produces larger Ld values than ‘B’ at the entrance/
plateau region. This can be deduced by analyzing the terms constituting the weighted average 
in both methods (10) and (11). In method ‘A’, each term is produced by one step done during 
the proton transport, whereas in method ‘B’ each term is created by grouping the energy losses 
and lengths of all the steps done for the proton transport within the voxel. Thus, the contri-
bution of the steps with high LET associated is more significant in method ‘A’, where each 
constitutes an individual term at the numerator of the weighted average (10), than in method 
‘B’, where these δ-ray-emitting steps are grouped with at least another step (that one needed 
to complete the proton trajectory within the voxel after the emission of the δ-ray, as shown in 
figure 7) to constitute one of the terms of the weighted average (11).

We would like to point out that the impact of the high LET tail on calculation method 
‘A’ becomes lower as the depth increases. This occurs because the kinetic energy decreases 
as the proton beam penetrates into the water tank, and so does the maximum kinetic energy 
transferred to δ-rays. Consequently, the probability of emitting δ-rays with an expected range 
above the production threshold (0.05 mm) decreases, thus the number of δ-rays tracked in 

Table 1.  Results obtained in a water spherical site (5 µm radius) virtually 
irradiated by a 160 MeV beam at the reported depth in a water tank: Dose-
mean lineal energy (yD), estimated Ed, corresponding δ2 calculated with (8), 
and Ld obtained with (6).

Depth (cm) yD (keV µm−1) Ed (keV) δ2 (keV) Ld (keV µm−1)

7.5 0.959(7) 16.6(2) 1.55(11) 0.646(15)
10.0 1.033(7) 16.2(2) 1.52(10) 0.716(15)
12.5 1.154(7) 16.4(2) 1.53(11) 0.821(15)
15.0 1.446(5) 16.4(2) 1.53(11) 1.081(15)
16.0 1.745(6) 16.3(2) 1.53(10) 1.348(15)
16.5 2.063(12) 16.2(2) 1.52(10) 1.63(2)
17.0 3.16(2) 15.4(2) 1.46(10) 2.61(2)
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Figure 6.  (Top) 2D histogram showing the correlation between the energy loss by 
primary protons due to electronic collisions per step (εs) and the step length (ls) for a 
voxel placed at a 4.0 cm depth (Δz = 0.5 mm), with a160 MeV proton beam. Diagonal 
lines show iso-LET curves for 0.1 keV µm−1 (short dashed), 1.0 keV µm−1 (dashed) 
and 10 keV µm−1 (long dashed). Frequency normalized to the total number of steps 
registered within the voxel is reported. (Middle) Subset of upper plot, reporting only 
steps creating secondary electrons explicitly. (Bottom) Data used in method ‘B’ for 
the same voxel: Electronic energy loss by each primary proton along the trajectory 
described inside the voxel versus the corresponding trajectory length at the same voxel. 
Frequency is normalized to the total number of tracks in this case. 
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the simulation decreases as the depth increases. Therefore, the bias observed for method ‘A’ 
becomes lower as the depth (beam energy) increases (decreases).

There is a similar occurrence when comparing Ld distributions obtained with different val-
ues of the production threshold of secondary particles, as shown in figure 8 for production cut 
values of 0.05, 0.10 and 0.20 mm with a voxel thickness (Δz) of 0.05 mm. As the production 
threshold value increases, the bias introduced by scoring method ‘A’ decreases because the 
probability of explicit secondary electron emission decreases and so does the influence of δ-
ray-emitting steps into the weighted average (10). This trend is in accordance with the fact that 
scoring method ‘A’ should converge to method ‘B’ if the production threshold value becomes 
large enough so that no δ-rays are explicitly transported during the simulation. Methods ‘B’ 
and ‘C’ showed no significant variations against changes of the production threshold. This is 
the expected behavior of scoring method ‘C’, since it only depends on the kinetic energy of 
the proton. As for method ‘B’, this is probably explained because the contribution of δ-ray-
emitting steps is not as important as in method ‘A’, as discussed above.

Figure 9 aims at explaining the variations observed in the Ld values calculated with method 
‘B’ at the dose plateau region. It shows the LET distribution of primary protons reaching a 
voxel placed along the central axis at a 4.0 cm depth with thickness Δz of 0.2 mm, 0.5 mm 
and 2.0 mm, respectively. LET is calculated as the electronic energy loss along the trajec-
tory described within the voxel over the trajectory length. Histograms are normalized to the 
number of primary protons reaching the voxel. The maximum difference between the mean 
values of the distributions is less than 0.25%, which is due to the fact that the proton LET 
varies as it travels through the water and that the voxel limits change for different voxel sizes 
although the geometric center remains at the same place. However, the variance of the distri-
bution becomes larger for smaller Δz values; in other words, the second moment of the LET 
distribution increases for decreasing Δz and therefore the Ld value calculated with method ‘B’ 
becomes larger for smaller Δz, as observed previously in figure 5.

Figure 10 shows the origin of the systematic deviation observed for the Ld calculation 
method ‘B’ at the Bragg peak. Thus, the LET is calculated as the quotient between the elec-
tronic energy loss of each primary proton over the trajectory length within a given voxel. In 

Figure 7.  Schematic example of the same physical situation simulated with large (left) 
or small voxels (right). In both cases, a proton (simulation steps represented by blue 
arrows) loses the same amount of energy, Ep,i − Ep,f, along its path and emits at the 
same point a δ-ray (red arrow) with initial kinetic energy Ee above the energy threshold 
for secondary electrons. The dotted line indicates the step which produces the δ-ray; 
note the step length difference between both plots. The dashed line (right plot) marks 
the proton steps used to calculate the unrestricted LET of the voxel where the δ-ray is 
emitted according to method ‘B’.
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these plots, the LET is represented versus the corresponding electronic energy loss and we 
report calculations obtained for a voxel placed at the central axis, with 17.8 cm depth (about 
0.3 cm downstream from the Bragg peak). The plots correspond to a voxel thickness (Δz) of 
0.2 mm (top), 0.5 mm (middle) and 2.0 mm (bottom), respectively. They clearly show that bins 
are filled around two lines that cross at a given point. The lower diagonal line corresponds to pri-
mary protons completely crossing the voxel, whereas the upper arched line is filled by primary 
protons absorbed within the voxel (since the electronic energy loss decreases for increasing 

Figure 8.  The same as figure  5 for dose average LET calculations obtained with 
production cut values of 0.05, 0.10 and 0.20 mm using scoring methods ‘A’, ‘B’ and 
‘C’. The voxel thickness (Δz) was 0.5 mm. Methods ‘B’ and ‘C’ are reported with only 
one curve since they did not show significant variations between different production 
cut values.

Figure 9.  LET distributions of primary protons computed with method ‘B’ (11) for 
a 160 MeV beam in a voxel placed at a 4.0 cm depth, size Δz of 0.2 mm (short-dashed 
histogram), 0.5 mm (long dashed) and 2.0 mm (solid). The mean value of each histogram 
is 0.5750(1) keV µm−1, 0.5751(1) keV µm−1 and 0.5763(1) keV µm−1, respectively. Error 
bars show 1σ statistical uncertainties.

) [MeV/mm]s lΣ)/(sε Σ(

-310 -210 -110 1 10 210

N
o

rm
al

iz
ed

 f
re

q
ue

nc
y

-610

-510

-410

-310

-210

-110
z = 0.2mm∆

z = 0.5mm∆

z = 2.0mm∆



M A Cortés-Giraldo and A Carabe﻿

17

Phys. Med. Biol. 00 (2014) 1

LET, the track length has to be smaller). According to (11), the bins around the crossing point 
have the largest weighting factor values of Ld (presented at x axis). It is observed that the value 
of the crossing point on the y axis increases for decreasing Δz. Thus, the LET of bins with 
the greatest weighting factor becomes larger as Δz decreases and consequently Ld becomes 
larger for smaller Δz. In this particular case, the Ld value was 6.6 keV µm−1, 7.8 keV µm−1 and 
8.4 keV µm−1 for a Δz value of 2.0 mm, 0.5 mm and 0.2 mm, respectively. These deviations are 
a consequence of the rapid variation of the LET at the end of the proton trajectory; thus, it 
is expected that the Ld value obtained with two voxels of different size, centered at the same 
point, varies since the interval in which the LET is averaged changes.

 In contrast, the voxel thickness did not have a significant impact on the calculation of Ld 
with methods ‘A’ and ‘C’. In method ‘A’ (10), the average is done over LET values calculated 

Figure 10.  LET computed with method ‘B’ (11) versus the corresponding electronic 
energy loss for each primary proton track of a 160 MeV proton beam at a voxel placed 
at the central axis, at a 17.8 cm depth. The voxel thickness (Δz) is 0.2 mm (top), 0.5 mm 
(middle) and 2.0 mm (bottom), respectively. Frequency normalized to the number of 
scoring protons is presented.
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for each individual step. As mentioned previously, few secondary electrons are explicitly sim-
ulated at the Bragg peak region (the expected range is generally below the production cut) and 
hence the effect discussed previously in figure 6 is not significant here. In method ‘C’ (12), 
the LET is calculated at each step by interpolation of electronic stopping data tables according 
to the proton kinetic energy and traversing material; thus, neither voxel thickness nor δ-ray 
production has any effect on the calculated value of Ld by means of method ‘C’.

Figures 11–13 show the Ld values calculated along the central axis for three SOBPs: A 
low energy one, defined for the treatment of a medulloblastoma (figure 11, with a range and 

Figure 11.  SOBP for a medulloblastoma treatment (solid line, range of 13.0 cm, 
modulation width of 5.9 cm) and dose average LET calculated with methods ‘A’ 
(dashed), ‘B’ (dot dashed) and ‘C’ (double dot dashed), respectively. Statistical 
uncertainties (1σ) are shown with shadow bands.

Figure 12.  The same as figure  11 for a prostate case; SOBP range of 23.5 cm, 
modulation width of 6.2 cm.
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modulation width of 13.0 cm and 5.9 cm, respectively), a high energy one for a prostate case 
(figure 12, with a range and modulation width of 23.5 cm and 6.2 cm, respectively) and an 
intermediate range SOBP (figure 13, with a range of 20.0 cm and width of 11.0 cm). The 
number of primary protons was such that the main pristine peak was simulated with, at least, 
2  ×  107 protons. The voxel thickness (Δz) was 1.0 mm and the width (Δr) was 1.0 cm. The 
production cut of secondary particles was 0.05 mm. Dose deposition and Ld values were cal-
culated along the central axis. The Ld values obtained at 80% proximal, 90% proximal, central 
and 90% distal SOBP dose levels are presented in table 2, with statistical uncertainties, for 
each SOBP. Considering method ‘C’ as reference, since it provided the most reliable results, 
we observe that method ‘A’ yields Ld values larger than those obtained with method ‘C’ at 
depths proximal to SOBP (e.g., 80 and 90% proximal SOBP dose levels), with greater dif-
ferences for wider SOBPs. For instance, Ld calculated with method ‘A’ was 16%, 17% and 
34% larger than method ‘C’ for SOBP width values 5.9 cm, 6.2 cm and 11.0 cm, respectively; 

Table 2.  Dose average LET values calculated by each method for various 
SOBPs at 80% proximal, 90% proximal, central and 90% distal depth.

SOBP

Ld method

Dose average LET (keV µm−1)

Range  
(cm)

Width  
(cm)

80%  
proximal

90%  
proximal Central

90%  
distal

13.0 5.9 A 1.063(11) 1.259(11) 2.574(13) 6.72(3)
B 0.922(2) 1.166(3) 2.299(10) 5.67(2)
C 0.919(3) 1.142(4) 2.535(13) 6.76(3)

23.5 6.2 A 1.025(10) 1.224(11) 2.328(10) 6.68(3)
B 0.881(2) 1.097(4) 2.077(7) 5.63(3)
C 0.878(3) 1.105(4) 2.277(9) 6.72(4)

20.0 11.0 A 0.89(3) 1.01(2) 1.94(2) 6.45(3)
B 0.670(2) 0.833(2) 1.705(8) 5.91(3)
C 0.666(2) 0.828(3) 1.848(11) 6.49(3)

Figure 13.  The same as figure 11 for an SOBP of range 20.0 cm and modulation width 
of 11.0 cm.
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however, methods ‘B’ and ‘C’ show a good agreement within uncertainties in this region. At 
distal SOBP, methods ‘A’ and ‘C’ agree within uncertainties, but differences of about 15% are 
reported between methods ‘B’ and ‘C’.

These discrepancies are clearly connected to the results discussed previously for the 
160 MeV proton beam. At depths proximal to SOBP, the residual range of protons is of several 
centimeters. For such a situation, we have shown that method ‘A’ gives Ld values artificially 
larger than method ‘C’ (see figure 5). The same kind of discrepancy is observed here. At the 
SOBP, the residual range of a significant fraction of protons is short. For this fraction of the 
beam, the situation in terms of the proton energy spectrum is similar to that found at the Bragg 
peak region of the 160 MeV beam. There, method ‘B’ gave artificially lower Ld values than 
method ‘C’. Here, disagreements between Ld calculation methods are qualitatively similar to 
those discussed previously in figure 5. Also, in connection with the results reported in figure 5, 
the deviations found upstream from the SOBP should become smaller with a larger voxel 
thickness, but this would increase the differences reported at the distal edge.

4.  Discussion

We have found significant differences in Monte Carlo calculations of a water tank irradiated 
with protons at therapeutic energies between the different Ld calculation methods presented 
in this work. Microdosimetry simulations were performed only with the aim of elucidating 
reference Ld values from the agreement between the macroscopic (Ld) and the microscopic 
(yD) calculations.

The method referred to as ‘A’ in this work (10) is the most intuitive and simplest calculation 
method of unrestricted Ld, since it involves the actual electronic energy loss and length for 
each individual simulation step. However, this method yields biased higher Ld values when 
the condensed-history algorithm used for proton transport produces the explicit emission of 
δ-rays, while the proton is traveling through a voxelized geometry. As with other condensed-
history Monte Carlo codes, Geant4 has a production threshold for the emission of δ-rays 
to avoid infrared divergence, so that secondary electrons released with an expected range 
below such a threshold are not tracked in the simulation, being its kinetic energy considered 
as deposited locally within the volume where the ionization was produced. Thus, when the 
transport algorithm calculates an energy transfer from the proton to an electron of the mate-
rial larger than the energy threshold, the electronic energy loss of the proton after the step 
completion must be larger than such a threshold due to energy conservation (we recall that in 
Geant4 the user sets the threshold in terms of expected range and the code internally calculates 
the energy threshold for each pair of particle and material). However, the lengths of the steps 
rarely become larger than the typical voxel size, because the step definition is restricted to 
the boundaries of the volume in which the particle is being transported. The result of having 
this artificial step limitation together with collision in which the energy transferred to δ-rays 
is above the production threshold is the introduction of spurious high LET values associated 
with δ-ray-emitting steps (shown in figures 6–8) into the weighted average expressed in (10), 
especially in small voxels and where the energy (or residual range) of the proton beam is large 
enough to produce a non-negligible amount of δ-rays above the threshold. In our simulation 
of a water tank irradiated by a 160 MeV proton beam, a difference of about a factor of 1.8 
was found for Ld at a 4.0 cm depth if the voxel thickness was varied from 2.0 to 0.2 mm, with 
a production threshold of 0.05 mm (figure 5). If the production threshold becomes higher, the 
bias is reduced (figure 8) because the probability of δ-ray explicit tracking becomes lower and 
so does the impact of steps with spurious high LET associated. The presence of the bias does 
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not mean that the condensation technique used for proton transport is wrong, since these high-
energy transfer collisions actually happen when a proton moves through a material. What the 
bias shows is that method ‘A’ proposed for Ld calculation (10) is not consistent, especially if 
the typical voxel size becomes smaller than 1 mm. 

The calculation method ‘B’ (11) could be a possible solution to avoid the impact of these 
spurious high LET terms. Here, the LET is calculated as the fraction of the electronic energy 
loss over the trajectory length within the voxel. As shown in figure 5, this calculation method 
gives less biased Ld values than method ‘A’ with small voxels at depths where the residual 
range is larger than 5 cm, thanks to the lower impact that δ-ray-emitting steps have in the 
LET in terms of the weighted average (11). This small bias is a consequence of the increasing 
importance of energy exchange fluctuations as the voxel thickness becomes smaller (figure 9), 
which is related to the limitations of applying the LET concept in small volumes. Furthermore, 
this method has a clear tendency to decrease the Ld value near the Bragg peak position as the 
voxel thickness increases. This occurs because protons with a residual range smaller than the 
voxel size (thus high LET) have a low weighting factor (figure 10) due to the relatively short 
path described within the voxel; obviously this effect becomes more noticeable for larger 
voxel sizes. Unfortunately, we could not estimate Ld values from microscopic methods in 
this region, since the validity of (6) is restricted to particles with a residual range consider-
ably longer than the site diameter (Kellerer 1985). Nevertheless, the calculation method ‘B’ 
showed a stable performance against transport parameter changes, such as the production 
threshold of secondary particles, in contrast to method ‘A’ (figure 8).

The calculation method ‘C’ (12) followed the step-by-step approach of method ‘A’ but 
computed the LET directly from the electronic stopping power tables. Method ‘C’ not only 
yields more stable Ld values against voxel size changes, but shows the most consistent agree-
ment with the Ldvalues estimated from microdosimetric calculations (figure 5). In addition, 
the calculations carried out with this computing strategy were not affected by changes in the 
production threshold of secondary particles (figure 8). Thus, method ‘C’ shows the most con-
sistent performance of the three calculation methods despite the fact that it uses the LET com-
puted from stopping power tables instead of the actual LET associated with each step, which 
is equivalent to ignoring the energy exchange fluctuations (actually present along the proton 
transport) in the LET calculations. Nevertheless, this method is consistent with the definition 
of LET, which is defined as the mean energy loss per unit path length.

We have also found qualitatively similar discrepancies for clinical SOBPs. For instance, 
method ‘A’ gave considerably larger Ldvalues than method ‘C’. Differences were greater for 
wider SOBPs at 80% dose level proximal SOBP, ranging between roughly 15% (5.9 cm width) 
and 30% (11.0 cm).

Although we expect these differences to become smaller for a voxel size greater than 
2.0 mm, such differences are expected to have a significant impact on RBE estimations, espe-
cially at the entrance in patient of each treatment field. 

5.  Conclusions

We have compared unrestricted dose average LET values (Ld) obtained by various Monte 
Carlo calculation methods reported in the literature to calculate dose deposition and unre-
stricted Ld maps in voxelized geometries exposed to therapeutical proton beams. The aim of 
this work has been to analyze the influence of the calculation method on the Ld value deter-
mined with Monte Carlo simulations. Since this is a pure methodological work, we decided 
to calculate Ld only for primary protons with the intention of simplifying the comparisons. In 
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a realistic calculation, contributions from secondary particles, such as secondary protons or 
nuclear fragments should be considered as discussed elsewhere (Grassberger and Paganetti 
2011, Romano et al 2014).

Our main conclusion is that method ‘C’ (12) gave the most consistent performance among 
the scoring methods used in this work. This is true not only from the point of view of the cal-
culations, but from the point of view of being a method that is less influenced by parameters 
that may change in the clinic from patient to patient depending on the treatment site, which is 
of key importance in clinical RBE estimations. Such stability is somehow a consequence of 
calculating the LET at each proton step as the mean energy loss per unit path length, in accord-
ance with the definition of LET.

We would like to emphasize that all the calculation methods presented in this work could be 
implemented in other Monte Carlo codes. Although Geant4 was used in this work, the biased 
Ld values obtained with methods ‘A’ and ‘B’ seem to be a consequence of the scoring method 
itself, which is influenced by step terminations due to boundary crossings and the presence of 
‘hard’ collisions producing high-energy δ-rays; therefore, we expect similar results with other 
Monte Carlo codes using condensed-history transport algorithms. Moreover, we expect scor-
ing method ‘C’ to determine stable Ld values with other Monte Carlo codes as well.
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Appendix. Estimation of δ2 and Ed from the calculation of fc(εc)

Let us assume a microscopic site in a water medium irradiated by protons with a residual 
range considerably longer than the site diameter. The weighted average of energy imparted per 
proton single collision, δ2, can be calculated directly from its definition (7) by Monte Carlo 
codes able to simulate each single interaction between protons and the medium. However, 
such computation is not possible with condensed-history Monte Carlo simulations, where 
collisions involving energy exchanges below a given threshold are computed as continuous 
energy loss, i.e., they are not calculated individually. In our Geant4 simulations, discrete 
ionization processes were calculated only if a δ-ray was released with kinetic energy above  
εmin = 100 eV. Consequently, it was not possible to calculate the distribution function of energy 
imparted per proton single collision, fc(εc), below εmin with our approach, as shown in figure 4.

In order to overcome this limitation, we calculated δ2 with approximation (8), in which δ2 
is estimated assuming the probability density of energy losses in single collision predicted by 
the free electron model, i.e., ε ε ε≡ =f f k( ) ( ) /c c c,free c c

2. If the range of δ-rays becomes larger 
than the site diameter, then the probability density of energy imparted per single collision is 
equal to fc,free(εc) only up to an upper limit energy value, Ed, which is introduced as correction 
to account for the efflux of energy carried out of the site by δ-rays (Kellerer 1985).

We deduced Ed as follows. Let us denote the distribution function of εc calculated with 
Geant4 as fc,MC(εc). Since the definition of δ2 involves the second and first moments of the 
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distribution, we calculated Ed,1 as the upper limit of the integral from εmin of εc fc,free(εc) which 
equals the integral from εmin of εc fc,MC(εc). We did a similar calculation with εc

2 fc,free(εc) and 
εc

2 fc,MC(εc) to get Ed,2:

�∫ ∫ε ε ε ε ε ε    =     ≡
ε ε

ε
f f I( ) d ( ) d ,

E

c c,free c c c c,MC c c 1
min

d,1

min

max

(A.1)

�∫ ∫ε ε ε ε ε ε    =     ≡
ε ε

ε
f f I( ) d ( ) d .

E

c
2

c,free c c c
2

c,MC c c 2
min

d,2

min

max

(A.2)

Solving for Ed,1 and Ed,2 yields

� ⎜ ⎟
⎛
⎝

⎞
⎠ε=E

I

k
exp ,d,1 min

1
(A.3)

� ε= +E
I

k
.d,2 min

2
(A.4)

The value of k was deduced by fitting εc
2 f c,MC data between εmin and εc = 1.0 keV, since we 

found that εc
2 f c,MC was roughly constant along this interval for all simulations. Finally, the 

average between E d,1 and Ed,2 gave the value of Ed.
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